В.Ю.Ирхин, М.И.Кацнельсон

Уставы небес. 16 глав о науке и вере (Часть 2)

пределах математики (не говоря уже об аксиоматизации физики , см. гл.6). Мы имеем в виду прежде всего знаменитую теорему Геделя, согласно которой даже в арифметике натуральных чисел существуют утверждения, неопровержимые и недоказуемые на основе любого конечного набора аксиом. (Приведенная здесь формулировка не вполне точна и нуждается в многочисленных пояснениях; см., например, упомянутые выше книги Р. Пенроуза или популярно написанную брошюру В.А. Успенского Теорема Геделя о неполноте , М., Наука, 1982; более систематическое изложение можно найти, например, в учебнике С. Клини Математическая логика , М., Мир, 1973). Близкое (и в действительности эквивалентное) утверждение состоит в существовании алгоритмически неразрешимых задач, то есть таких задач, которые в принципе не могут быть решены никаким компьютером, действующим на основе фиксированного набора правил. (Известно много конкретных примеров таких задач; скажем, не существует общего способа определить, можно или нельзя вымостить всю плоскость без зазоров, используя только многоугольные плитки из заданного конечного набора). Тем самым, математика неизбежно должна быть содержательной и человеческой (или, согласно платонистским взглядам, сверхчеловеческой), но ни в коем случае не компьютерной , то есть бездумно выводимой из фиксированного набора правил:

Вы [сторонники взглядов Рассела и Гильберта] даете нам не крылья, а детские помочи. Но тогда мы имеем право требовать, чтобы эти помочи не давали нам падать. В такой помощи - единственное их оправдание. Если ценное имущество не приносит крупных доходов, то нужно по крайней мере, чтобы оно было в надежных руках. Нужно ли следовать вашим правилам слепо? Конечно, да, иначе нам могла бы помочь разобраться в них одна только интуиция. Но в таком случае необходимо, чтобы эти правила были непогрешимы; слепое доверие можно питать только к непогрешимому авторитету. Для вас это необходимость. Вы должны быть непогрешимы, или вас не будет (А. Пуанкаре, О науке, с.390).

Различие подходов и мировоззрений в вопросе об основаниях математики особенно ярко проявляется при рассмотрении проблем, связанных с идеей бесконечности. Стандартная математика XX века базируется на теории множеств, разработанной в XIX веке Г. Кантором (а говоря более технически - на так называемой системе аксиом Цермело-Френкеля). Согласно Кантору, существуют разные степени (мощности) бесконечности: бесконечность счетных множеств, таких, как ряд натуральных чисел, бесконечность континуума, например, отрезка единичной длины (ту же мощность имеют множества точек ограниченных и неограниченных тел в пространстве любой размерности), и бесконечности более высокого порядка. Последние могут быть получены как множество всех подмножеств исходного бесконечного множества.

Линия состоит из множества точек, плоскость - из бесконечного множества линий; книга - из бесконечного множества плоскостей; сверхкнига - из бесконечного множества книг (Х.Л. Борхес, Книга песка).

Эти идеи имеют большое психологическое значение.

...После того, как наше переживание становится реальным процессом в реальном мире, а наше феноменологическое время простирается, как нечто космическое, на весь мир, мы все-таки подменяем континуум точным понятием действительного числа, вопреки существенной неточности, неустранимой из того, что нам надо... Во всем этом не просто проявляется какая-то насильственная систематизация или стремление к простоте мысли, вызванное нашими практическими задачами и целями: в действие вступает подлинный разум, раскрывающий присущий действительности логос ... Конечно, наглядно созерцаемый и математический континуум не совпадают; между ними зияет пропасть. Тем не менее, существуют разумные мотивы, побуждающие нас стремиться к тому, чтобы от одного перейти к другому, - столь же разумные, как и те, которые заставляют при исследовании природы стремиться проникнуть за пределы той реальности, которая основывается на актах опыта... - к стоящему за чувственными данными подлинно объективному , бескачественному физическому миру. (Г. Вейль, Математическое мышление, с. 159).

Теория множеств Кантора очень далеко ( бесконечно далеко ) выходит за рамки чувственного опыта. Вообще говоря, никакие суждения относительно бесконечных множеств не могут быть эмпирически проверяемы:

Всякая теорема математики должна быть доступна проверке. Когда я высказываю эту теорему, я утверждаю, что все проверки, которые я испробую, приведут к желаемому результату, и даже если одна из